Nonlinear Relationships

Chapter 7

Prepared by Vera Tabakova, East Carolina University

Chapter 7: Nonlinear Relationships

- 7.1 Polynomials
- 7.2 Dummy Variables
- 7.3 Applying Dummy Variables
- 7.4 Interactions Between Continuous Variables
- 7.5 Log-Linear Models

Principles of Econometrics, 3rd Edition

t-Statistic Prob. -9.3062 0.0000 17.2282 0.0000 6.6292 0.0000 -4.2515 0.0000
17.2282 0.0000 6.6292 0.0000
6.6292 0.000
-4.2515 0.000
-4.2515 0.000
-4.2515

7.2.1 Interce	ot Dumm	y Variables
---------------	---------	-------------

$PRICE = \beta_1 + \delta D + \beta_2 SQFT + e$	(7.9)
$E(PRICE) = \begin{cases} (\beta_1 + \delta) + \beta_2 SQFT & \text{when } D = \\ \beta_1 + \beta_2 SQFT & \text{when } D = \end{cases}$	1 0 ^(7.10)
es of Econometrics, 3rd Edition	

7.2.2 Slope Dummy Variables

7.2.3 An Example: The University Effect on House Prices

Table 7.2	2 Representa	tive Real Esta	nte Data Values		
PRICE	SQFT	AGE	UTOWN	POOL	FPLACE
205.452	23.46	6	0	0	1
185.328	20.03	5	0	0	1
248.422	27.77	6	0	0	0
287.339	23.67	28	1	1	0
255.325	21.30	0	1	1	1
301.037	29.87	6	1	0	1

nciples of Econometrics, 3rd Edition

$PRICE = \beta_1 + \delta_1 UTC$	$DWN + \beta_2 SQFT + \gamma (SQFT \times UT)$	
$+\beta_3 AGE +$	$\delta_2 POOL + \delta_3 FPLACE + e$	(7.13)
1 P ₃ /10E 1	0 ₂ 100E+0 ₃ 11EACE+t	

7.2.3 An Example: The University Effect on House Prices

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	24.5000	6.1917	3.9569	0.0001
UTOWN	27.4530	8.4226	3.2594	0.0012
SQFT	7.6122	0.2452	31.0478	0.0000
SQFT×UTOWN	1.2994	0.3320	3.9133	0.0001
AGE	-0.1901	0.0512	-3.7123	0.0002
POOL	4.3772	1.1967	3.6577	0.0003
FPLACE	1.6492	0.9720	1.6968	0.0901
$R^2 = 0.8706$	SSE = 230184.4			

7.2.3 An Example: The University Effect on House Prices

- $PRICE = (24.5 + 27.453) + (7.6122 + 1.2994)SQFT .1901AGE \\ + 4.3772POOL + 1.6492FPLACE$
 - = 51.953 + 8.9116 SQFT .1901 AGE + 4.3772 POOL + 1.6492 FPLACE

PRICE = 24.5 + 7.6122 SQFT - .1901 AGE + 4.3772 POOL + 1.6492 FPLACE

Principles of Econometrics, 3rd Edition

Slide 7-1

7.2.3 An Example: The University Effect on House Prices

Based on these regression results, we estimate

- the location premium, for lots near the university, to be \$27,453
- the price per square foot to be \$89.12 for houses near the university, and \$76.12 for houses in other areas.
- that houses depreciate \$190.10 per year
- that a pool increases the value of a home by \$4377.20
- that a fireplace increases the value of a home by \$1649.20

nciples of Econometrics, 3rd Edit

ide 7-20

7.3 Applying dummy variables

	ons Between Qualitativ $C + \delta_1 BLACK + \delta_2 FEMALE + \gamma (BLACK)$	
	$(\beta_1 + \beta_2 EDUC)$	WHITE – MALE
E(WAGE) = -	$\begin{cases} \beta_1 + \beta_2 EDUC \\ (\beta_1 + \delta_1) + \beta_2 EDUC \\ (\beta_1 + \delta_2) + \beta_2 EDUC \\ (\beta_1 + \delta_1 + \delta_2 + \gamma) + \beta_2 EDUC \end{cases}$	BLACK – MALE WHITE – FEMALE
	$((\beta_1 + \delta_1 + \delta_2 + \gamma) + \beta_2 EDUC)$	BLACK – FEMALE
iples of Econometrics, 3rd E	dition	Sli

7.3.1 Interactions Between Qualitative Factors

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3.2303	0.9675	-3.3388	0.0009
EDUC	1.1168	0.0697	16.0200	0.0000
BLACK	-1.8312	0.8957	-2.0444	0.0412
FEMALE	-2.5521	0.3597	-7.0953	0.0000
BLACK×FEMALE	0.5879	1.2170	0.4831	0.6291
$R^2 = 0.2482$	SSE = 29307.71			

7.3.1 Interactions Between Qualitative Factors	
$F = \frac{(SSE_R - SSE_U) / J}{SSE_U / (N - K)}$	
WAGE = -4.9122 + 1.1385 EDUC (se) (.9668) (.0716)	
$F = \frac{(SSE_R - SSE_U) / J}{SSE_U / (N - K)} = \frac{(31093 - 29308) / 3}{29308 / 995} = 20.20$	
Principles of Econometrics, 3rd Edition	Slide 7-23

7.3.2 Qualitative Factors with Several Categories

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	-2.4557	1.0510	-2.3365	0.0197
EDUC	1.1025	0.0700	15.7526	0.0000
BLACK	-1.6077	0.9034	-1.7795	0.0755
FEMALE	-2.5009	0.3600	-6.9475	0.0000
BLACK×FEMALE	0.6465	1.2152	0.5320	0.5949
SOUTH	-1.2443	0.4794	-2.5953	0.0096
MIDWEST	-0.4996	0.5056	-0.9880	0.3234
WEST	-0.5462	0.5154	-1.0597	0.2895
$R^2 = 0.2535$	SSE = 29101.3			

7.3.3 Testing the Equivalence of Two Regressions

 $PRICE = \beta_1 + \delta D + \beta_2 SQFT + \gamma(SQFT \times D) + e$

$$E(PRICE) = \begin{cases} \alpha_1 + \alpha_2 SQFT & D = 1\\ \beta_1 + \beta_2 SQFT & D = 0 \end{cases}$$

 $WAGE = \beta_1 + \beta_2 EDUC + \delta_1 BLACK + \delta_2 FEMALE + \gamma (BLACK \times FEMALE) + e$

rinciples of Econometrics, 3rd Editio

	ons		
$AGE = \beta_1 + \beta_2 E$	$DUC + \delta_1 BLACK + \delta_2 FEMALE + \gamma (BLACK \times FEM)$	ALE)+	
θ _I SOUT	$TH + \theta_2 (EDUC \times SOUTH) + \theta_3 (BLACK \times SOUTH)$)+	(7.16)
θ (FEI	$AALE \times SOUTH$) + θ_{s} (BLACK × FEMALE × SOUTH	(H) + e	
04(112) 3(-)	
04(124		-)	
0 ₄ (1 E.	$(\beta_{1} + \beta_{2}EDUC + \delta_{3}BLACK + \delta_{2}FEMALE + \gamma(BLACK \times FEMALE)$	souti	H = 0
E(WAGE) =	$\begin{cases} \beta_{1} + \beta_{2}EDUC + \delta_{1}BLACK + \delta_{2}FEMALE + \\ \gamma(BLACK \times FEMALE) \end{cases}$	SOUTI	H = 0
	$ \begin{aligned} &(\beta_i + \beta_2 EDUC + \delta_i BLACK + \delta_2 FEMALE + \\ &\gamma(BLACK \times FEMALE) \end{aligned} $	SOUTI	

7.3.3 Testing the Equivalence of Two

7.3.3 Testing the Equivalence of Two Regressions

	(1		(2 Non-:		(3 So	
Variable	Full s Coefficient		Coefficient			
С	-3.5775	1.1513	-3.5775	1.2106	-2.2752	1.5550
EDUC	1.1658	0.0824	1.1658	0.0866	0.9741	0.1143
BLACK	-0.4312	1.3482	-0.4312	1.4176	-2.1756	1.0804
FEMALE	-2.7540	0.4257	-2.7540	0.4476	-1.8421	0.5896
BLACK×FEMALE	0.0673	1.9063	0.0673	2.0044	0.6101	1.4329
SOUTH	1.3023	2.1147				
EDUC×SOUTH	-0.1917	0.1542				
BLACK×SOUTH	-1.7444	1.8267				
FEMALE×SOUTH	0.9119	0.7960				
BLACK×FEMALE×SOUTH	0.5428	2.5112				
SSE	290	12.7	220	031.3	69	31.4
N	100	0	685	5	31:	5

7.3.3 Testing the Equivalence of Two Regressions

$$H_0: \boldsymbol{\theta}_1 = \boldsymbol{\theta}_2 = \boldsymbol{\theta}_3 = \boldsymbol{\theta}_4 = \boldsymbol{\theta}_5 = \boldsymbol{0}$$

$$F = \frac{(SSE_R - SSE_U) / J}{SSE_U / (N - K)} = \frac{(29307.7 - 29012.7) / 5}{29012.7 / 990} = 2.0132$$

inciples of Econometrics, 3rd Edition

Slide

7.3.3 Testing the Equivalence of Two Regressions

Remark: The usual *F*-test of a joint hypothesis relies on the assumptions MR1-MR6 of the linear regression model. Of particular relevance for testing the equivalence of two regressions is assumption MR3, that the variance of the error term is the same <u>for all</u> observations. If we are considering possibly different slopes and intercepts for parts of the data, it might also be true that the error variances are different in the two parts of the data. In such a case the usual *F*-test is not valid.

inciples of Econometrics, 3rd Edition

Slide 7-30

7.3.4 Controlling for Time

7.3.4a Seasonal Dummies

7.3.4b Annual Dummies

7.3.4c Regime Effects

$$ITC = \begin{cases} 1 & 1962 - 1965, 1970 - 1986 \\ 0 & otherwise \end{cases}$$

 $INV_{t} = \beta_{1} + \delta ITC_{t} + \beta_{2}GNP_{t} + \beta_{3}GNP_{t-1} + e_{t}$

Principles of Econometrics, 3rd Edition

Slide 7-31

7.4 Interactions Between Continuous Variables

Table 7.7	7 Pizza Expenditure Data	
PIZZA	INCOME	AGE
109	15000	25
0	30000	45
0	12000	20
108	20000	28
220	15000	25

ciples of Econometrics, 3rd Edition

.

7.4 Interactions Between Continuous Variables

	$PIZZA = \beta_1 + \beta_2 AGE + \beta_3 INCOME + e$	(7.17)
	$PIZZA = \beta_1 + \beta_2 AGE + \beta_3 INCOME + e$	
	$\partial E(PIZZA)/\partial INCOME = \beta_3$	
	<i>PIZZA</i> = 342.88 - 7.58 <i>AGE</i> + .0024 <i>INCOME</i>	
	$(t) \qquad (-3.27) \qquad (3.95)$	
incipl	es of Econometrics, 3rd Edition	Slide 7-3.

7.4 Interactions Between Continuous Variables

 $PIZZA = \beta_1 + \beta_2 AGE + \beta_3 INCOME + \beta_4 (AGE \times INCOME) + e$ (7.18)

 $\partial E(PIZZA)/\partial AGE = \beta_2 + \beta_4 INCOME$ $\partial E(PIZZA)/\partial INCOME = \beta_3 + \beta_4 AGE$

 $\begin{array}{ll} PIZZA = 161.47 - 2.98AGE + .009INCOME - .00016(AGE \times INCOME) \\ (t) & (-.89) & (2.47) & (-1.85) \end{array}$

nciples of Econometrics, 3rd Editi

7.4 Interactions Between Continuous Variables

 $\ln(WAGE)_{FEMALES} - \ln(WAGE)_{MALES} = \Delta \ln(WAGE) = \delta$

ln(WAGE) = .9290 + .1026EDUC - .2526FEMALE (se) (.0837) (.0061) (.0300)

inciples of Econometrics, 3rd Edition

7.5.1b An Exact Calculation $\ln(WAGE)_{FEMALES} - \ln(WAGE)_{MALES} = \ln\left(\frac{WAGE_{FEMALES}}{WAGE_{MALES}}\right) = \delta$ $\frac{WAGE_{FEMALES}}{WAGE_{MALES}} = e^{\delta}$ $\frac{WAGE_{FEMALES}}{WAGE_{MALES}} - \frac{WAGE_{MALES}}{WAGE_{MALES}} = \frac{WAGE_{FEMALES} - WAGE_{MALES}}{WAGE_{MALES}} = e^{\delta} - 1$ $100(e^{\delta} - 1)\% = 100(e^{-252\delta} - 1)\% = -22.32\%$ Trinciples of Econometrics. 3rd Edition

Chapter 7 Appendix

 Appendix 7 Details of log-linear model interpretation

Principles of Econometrics, 3rd Edition

Slide 7

