Nonlinear Relationships

## Chapter 7

## Chapter 7: Nonlinear Relationships

- 7.1 Polynomials
- 7.2 Dummy Variables
- 7.3 Applying Dummy Variables
- 7.4 Interactions Between Continuous Variables
- 7.5 Log-Linear Models


### 7.1 Polynomials



Figure 7.2 Average and marginal (a) cost curves and (b) product curves

Figure 7.1 (a) Total cost curve and (b) total product curve

### 7.1 Polynomials

$A C=\beta_{1}+\beta_{2} Q+\beta_{3} Q^{2}+e$
(7.1)

$$
T C=\alpha_{1}+\alpha_{2} Q+\alpha_{3} Q^{2}+\alpha_{4} Q^{3}+e
$$

$\frac{d E(A C)}{d Q}=\beta_{2}+2 \beta_{3} Q$
$\frac{d E(T C)}{d Q}=\alpha_{2}+2 \alpha_{3} Q+3 \alpha_{4} Q^{2}$
(7.4)

### 7.1.2 A Wage Equation

$W A G E=\beta_{1}+\beta_{2} E D U C+\beta_{3} E X P E R+\beta_{4} E X P E R^{2}+e$
$\frac{\partial E(W A G E)}{\partial E X P E R}=\beta_{3}+2 \beta_{4} E X P E R$

Slide 7-6


### 7.1.2 A Wage Equation

$$
\begin{aligned}
& \left.\frac{\partial E(W A G E)}{\partial E X P E R}\right|_{E X P E R=18}=.3409+2(-.0051) 18=.1576 \\
& E X P E R=-\beta_{3} / 2 \beta_{4}=-.3409 / 2(-.0051)=33.47
\end{aligned}
$$

### 7.2 Dummy Variables

PRICE $=\beta_{1}+\beta_{2} S Q F T+e$
(7.7)

$$
D= \begin{cases}1 & \text { if characteristic is present } \\ 0 & \text { if characteristic is not present }\end{cases}
$$

$D= \begin{cases}1 & \text { if property is in the desirable neighborhood } \\ 0 & \text { if property is not in the desirable neighborhood }\end{cases}$


Figure 7.3 An intercept dummy variable

### 7.2.1a Choosing The Reference Group

$$
L D= \begin{cases}1 & \text { if property is not in the desirable neighborhood } \\ 0 & \text { if property is in the desirable neighborhood }\end{cases}
$$

$$
\text { PRICE }=\beta_{1}+\lambda L D+\beta_{2} S Q F T+e
$$

$$
\text { PRICE }=\beta_{1}+\delta D+\lambda L D+\beta_{2} S Q F T+e
$$

7.2.1 Intercept Dummy Variables

$$
E(\text { PRICE })= \begin{cases}\left(\beta_{1}+\delta\right)+\beta_{2} S Q F T & \text { when } D=1 \\ \beta_{1}+\beta_{2} S Q F T & \text { when } D=0\end{cases}
$$



### 7.2.2 Slope Dummy Variables



Figure 7.4 (a) A slope dummy variable. (b) A slope and intercept dummy variable
Principles of Economerrics, 3rd Edition
Slide 7-14

### 7.2.2 Slope Dummy Variables

PRICE $=\beta_{1}+\delta D+\beta_{2} S Q F T+\gamma(S Q F T \times D)+e$
(7.12)

$$
E(\text { PRICE })= \begin{cases}\left(\beta_{1}+\delta\right)+\left(\beta_{2}+\gamma\right) \text { SQFT } & \text { when } D=1 \\ \beta_{1}+\beta_{2} S Q F T & \text { when } D=0\end{cases}
$$

7.2.3 An Example: The University Effect on House Prices

| Table 7.2 | Representative Real Estate Data Values |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| PRICE | SQFT | AGE | UTOWN | POOL | FPLACE |
| 205.452 | 23.46 | 6 | 0 | 0 | 1 |
| 185.328 | 20.03 | 5 | 0 | 0 | 1 |
| 248.422 | 27.77 | 6 | 0 | 0 | 0 |
| 287.339 | 23.67 | 28 | 1 | 1 | 0 |
| 255.325 | 21.30 | 0 | 1 | 1 | 1 |
| 301.037 | 29.87 | 6 | 1 | 0 | 1 |



### 7.2.3 An Example: The University Effect on House Prices

| Table 7.3 | House Price Equation Estimates |  |  |  |
| :--- | :---: | :---: | ---: | :---: | :---: |
| Variable | Cocfficient | Std. Error | $t$-Statistic | Prob. |
| C | 24.5000 | 6.1917 | 3.9569 | 0.0001 |
| UTOWN | 27.4530 | 8.4226 | 3.2594 | 0.0012 |
| SQFT | 7.6122 | 0.2452 | 31.0478 | 0.0000 |
| SQFT $\times$ UTOWN | 1.2994 | 0.3320 | 3.9133 | 0.0001 |
| AGE | -0.1901 | 0.0512 | -3.7123 | 0.0002 |
| POOL | 4.3772 | 1.1967 | 3.6577 | 0.0003 |
| FPLACE | 1.6492 | 0.9720 | 1.6968 | 0.0901 |
| $R^{2}=0.8706$ | SSE $=230184.4$ |  |  |  |

Principles of Econometrics, 3rd Edition Slide 7-18


### 7.2.3 An Example: The University Effect on House Prices

Based on these regression results, we estimate

- the location premium, for lots near the university, to be $\$ 27,453$
- the price per square foot to be $\$ 89.12$ for houses near the university, and $\$ 76.12$ for houses in other areas.
- that houses depreciate $\$ 190.10$ per year
- that a pool increases the value of a home by $\$ 4377.20$
- that a fireplace increases the value of a home by $\$ 1649.20$

Principles of Economerrics, 3nd Edition

### 7.3 Applying dummy variables

- 7.3.1 Interactions Between Qualitative Factors
$W A G E=\beta_{1}+\beta_{2} E D U C+\delta_{1} B L A C K+\delta_{2} F E M A L E+\gamma(B L A C K \times F E M A L E)+e \quad$ (7.14)
$E($ WAGE $)= \begin{cases}\beta_{1}+\beta_{2} \text { EDUC } & \text { WHITE }- \text { MALE } \\ \left(\beta_{1}+\delta_{1}\right)+\beta_{2} \text { EDUC } & \text { BLACK }- \text { MALE } \\ \left(\beta_{1}+\delta_{2}\right)+\beta_{2} E D U C & \text { WHITE }- \text { FEMALE } \\ \left(\beta_{1}+\delta_{1}+\delta_{2}+\gamma\right)+\beta_{2} \text { EDUC } & \text { BLACK }- \text { FEMALE }\end{cases}$
7.3.1 Interactions Between Qualitative Factors

| Ta ble 7.4 | Wage Equation with Race and Gender |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | $t$-Statistic | Prob. |
| C | -3.2303 | 0.9675 | -3.3388 | 0.0009 |
| EDUC | 1.1168 | 0.0697 | 16.0200 | 0.0000 |
| BLACK | -1.8312 | 0.8957 | -2.0444 | 0.0412 |
| FEMALE | -2.5521 | 0.3597 | -7.0953 | 0.0000 |
| BLACK $\times$ FEMALE | 0.5879 | 1.2170 | 0.4831 | 0.6291 |
| $R^{2}=0.2482$ | $S S E=29307.71$ |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  | Slide 7-22 |  |

### 7.3.1 Interactions Between Qualitative

## Factors

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(N-K)}
$$

$$
W A G E=-4.9122+1.1385 E D U C
$$

$$
\text { (se) } \quad(.9668)
$$

$$
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(N-K)}=\frac{(31093-29308) / 3}{29308 / 995}=20.20
$$

### 7.3.2 Qualitative Factors with Several

 Categories$W A G E=\beta_{1}+\beta_{2} E D U C+\delta_{1} S O U T H+\delta_{2} M I D W E S T+\delta_{3} W E S T+e \quad$ (7.15)

$$
E(\text { WAGE })= \begin{cases}\left(\beta_{1}+\delta_{3}\right)+\beta_{2} \text { EDUC } & \text { WEST } \\ \left(\beta_{1}+\delta_{2}\right)+\beta_{2} \text { EDUC } & \text { MIDWEST } \\ \left(\beta_{1}+\delta_{1}\right)+\beta_{2} \text { EDUC } & \text { SOUTH } \\ \beta_{1}+\beta_{2} \text { EDUC } & \text { NORTHEAST }\end{cases}
$$

### 7.3.2 Qualitative Factors with Several Categories

| Table 7.5 | Wage Equation with Regional Dummy Variables |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Variable | Coefficient | Std. Error | $t$-Statistic | Prob. |
| C | -2.4557 | 1.0510 | -2.3365 | 0.0197 |
| EDUC | 1.1025 | 0.0700 | 15.7526 | 0.0000 |
| BLACK | -1.6077 | 0.9034 | -1.7795 | 0.0755 |
| FEMALE | -2.5009 | 0.3600 | -6.9475 | 0.0000 |
| BLACK $\times$ FEMALE | 0.6465 | 1.252 | 0.5320 | 0.5949 |
| SOUTH | -1.2443 | 0.4794 | -2.5953 | 0.0096 |
| MIDWEST | -0.4996 | 0.5056 | -0.9880 | 0.3234 |
| WEST | -0.5462 | 0.5154 | -1.0597 | 0.2895 |
| $\boldsymbol{R}^{2}=0.2535$ | SSF $=29101.3$ |  |  |  |

### 7.3.3 Testing the Equivalence of Two Regressions

$$
P R I C E=\beta_{1}+\delta D+\beta_{2} S Q F T+\gamma(S Q F T \times D)+e
$$

$$
E(\text { PRICE })= \begin{cases}\alpha_{1}+\alpha_{2} S Q F T & D=1 \\ \beta_{1}+\beta_{2} S Q F T & D=0\end{cases}
$$

$W A G E=\beta_{1}+\beta_{2} E D U C+\delta_{1} B L A C K+\delta_{2} F E M A L E+\gamma(B L A C K \times F E M A L E)+e$

Principles of Econometrics, 3nd Edition
Slide 7-26

### 7.3.3 Testing the Equivalence of Two Regressions

| Variable |  |  |  |  | $\underset{\substack{\text { (3) } \\ \text { Coefficient Std. Error }}}{\text { Cor }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -3.5775 | 1.1513 | -3.5775 | 1.2106 | -2.2752 | 1.5550 |
| EDUC | 1.1658 | 0.0824 | 1.1658 | 0.0866 | 0.9741 | 0.1143 |
| BLACK | -0.4312 | 1.3482 | -0.4312 | 1.4176 | -2.1756 | 1.0804 |
| FEMALE | -2.7540 | 0.4257 | -2.7540 | 0.4476 | $-1.8421$ | 0.5896 |
| BLACK $\times$ FEMALE | 0.0673 | 1.9063 | 0.0673 | 2.0044 | 0.6101 | 1.4329 |
| SOUTH | 1.3023 | 2.1147 |  |  |  |  |
| EDUC $\times$ SOUTH | -0.1917 | 0.1542 |  |  |  |  |
| BLACK $\times$ SOUTH | -1.7444 | 1.8267 |  |  |  |  |
| FEMALE $\times$ SOUTH | 0.9119 | 0.7960 |  |  |  |  |
| BLACK $\times$ FEMALE $\times$ SOUTH | 0.5428 | 2.5112 |  |  |  |  |
| SSE | $\begin{aligned} & 29012.7 \\ & 10000 \end{aligned}$ |  | $\begin{aligned} & 22031.3 \\ & 685 \end{aligned}$ |  | $6981.4$ |  |
| $N$ |  |  |  |  |  |  |

### 7.3.3 Testing the Equivalence of Two Regressions

$$
\begin{gathered}
H_{0}: \theta_{1}=\theta_{2}=\theta_{3}=\theta_{4}=\theta_{5}=0 \\
F=\frac{\left(S S E_{R}-S S E_{U}\right) / J}{S S E_{U} /(N-K)}=\frac{(29307.7-29012.7) / 5}{29012.7 / 990}=2.0132
\end{gathered}
$$

### 7.3.3 Testing the Equivalence of Two Regressions

Remark: The usual $F$-test of a joint hypothesis relies on the assumptions MR1-MR6 of the linear regression model. Of particular relevance for testing the equivalence of two regressions is assumption MR3, that the variance of the error term is the same for all observations. If we are considering possibly different slopes and intercepts for parts of the data, it might also be true that the error variances are different in the two parts of the data. In such a case the usual $F$-test is not valid.

| 7.3.4 Controlling for Time |
| :--- |
| 7.3.4a Seasonal Dummies |
| 7.3.4b Annual Dummies |
| 7.3.4c Regime Effects |
| ITC $= \begin{cases}1 & 1962-1965,1970-1986 \\ 0 & \text { otherwise }\end{cases}$ |
| INV $=\beta_{1}+\delta I T C_{t}+\beta_{2} G N P_{t}+\beta_{3} G N P_{t-1}+e_{t}$ |
| Principles of Economerics 3nd Ediion |

### 7.4 Interactions Between Continuous Variables

| Table 7.7 | Pizza Expenditure Data |  |
| :---: | :---: | :---: |
| PIZZA | INCOME | AGE |
| 109 | 15000 | 25 |
| 0 | 30000 | 45 |
| 0 | 12000 | 20 |
| 108 | 20000 | 28 |
| 220 | 15000 | 25 |

### 7.4 Interactions Between Continuous Variables

## PIZZA $=\beta_{1}+\beta_{2} A G E+\beta_{3} I N C O M E+e$

```
PIZZA = 循 + - _
\partialE(PIZZA)/\partialINCOME = 哹
PIZZA = 342.88-7.58AGE +.0024INCOME
    (t) (-3.27) (3.95)
```


### 7.4 Interactions Between Continuous Variables

```
PIZZA = \beta
```

$$
\partial E(P I Z Z A) / \partial A G E=\beta_{2}+\beta_{4} I N C O M E
$$

$$
\partial E(P I Z Z A) / \partial I N C O M E=\beta_{3}+\beta_{4} A G E
$$

$P I Z Z A=161.47-2.98 A G E+.009 I N C O M E-.00016(A G E \times I N C O M E)$
$(t) \quad(-.89) \quad(-1.85)$

### 7.4 Interactions Between Continuous Variables

$\frac{\text { ZE }(\text { PIZZA })}{\partial A C E}=b_{2}+b_{4} I N C O M E$ $\partial A G E$<br>$=-2.98-.00016$ INCOME<br>\(=\left\{\begin{array}{rr}-6.98 \& for \operatorname{INCOME}=\$ 25,000<br>-17.40 \& for \operatorname{INCOME}=\$ 90,000\end{array}\right.\)

### 7.5 Log-Linear models

### 7.5.1 Dummy Variables

$\ln (W A G E)=\beta_{1}+\beta_{2} E D U C+\delta F E M A L E$
$\ln (W A G E)= \begin{cases}\beta_{1}+\beta_{2} E D U C & \text { MALES } \\ \left(\beta_{1}+\delta\right)+\beta_{2} E D U C & \text { FEMALES }\end{cases}$

Principles of Econometrics, 3nd Edition
Slide 7-36

### 7.5.1a A Rough Calculation

$\ln (W A G E)_{\text {FEMALES }}-\ln (W A G E)_{\text {MALES }}=\Delta \ln (W A G E)=\delta$
$\ln (W A G E)=.9290+.1026 E D U C-.2526$ FEMALE

$$
(\mathrm{se}) \quad(.0837)(.0061)
$$

7.5.16 An Exact Calculation

$$
\begin{gathered}
\ln (W A G E)_{\text {FEMALES }}-\ln (W A G E)_{\text {MALES }}=\ln \left(\frac{W A G E_{\text {FEMALES }}}{W A G E_{\text {MALES }}}\right)=\delta \\
\frac{W A G E_{\text {FEMALES }}}{W A G E_{\text {MALES }}}=e^{\delta} \\
\frac{W A G E_{\text {FEMALES }}}{W A G E_{\text {MALES }}}-\frac{W A G E_{\text {MALES }}}{W A G E_{\text {MALES }}}=\frac{W A G E_{\text {FEMALES }}-W A G E_{\text {MALES }}}{W A G E_{\text {MALES }}}=e^{\delta}-1 \\
100\left(e^{\delta}-1\right) \%=100\left(e^{-.2526}-1\right) \%=-22.32 \% \\
\text { Principles of Economerrics, 3nl Edition }
\end{gathered}
$$



## Keywords

- annual dummy variables
- binary variable
- Chow test
- collinearity
dichotomous variable
- dummy variable
- dummy variable trap
- exact collinearity
- hedonic model
- interaction variable
- intercept dummy variable
- log-linear models
- nonlinear relationship
- polynomial
- reference group
- regional dummy variable
- seasonal dummy variables
- slope dummy variable


## Chapter 7 Appendix

- Appendix 7 Details of log-linear model interpretation


## Appendix 7

Details of log-linear model interpretation

$$
E(y)=\exp \left(\beta_{1}+\beta_{2} x+\sigma^{2} / 2\right)=\exp \left(\beta_{1}+\beta_{2} x\right) \times \exp \left(\sigma^{2} / 2\right)
$$

$$
E(y)=\exp \left(\beta_{1}+\beta_{2} x+\delta D\right) \times \exp \left(\sigma^{2} / 2\right)
$$

## Appendix 7

Details of log-linear model interpretation

$$
\% \Delta E(y)=100\left[\frac{E\left(y_{1}\right)-E\left(y_{0}\right)}{E\left(y_{0}\right)}\right] \%
$$

$$
=100\left[\frac{\left(\exp \left(\beta_{1}+\beta_{2} x+\delta\right) \times \exp \left(\sigma^{2} / 2\right)\right)-\left(\exp \left(\beta_{1}+\beta_{2} x\right) \times \exp \left(\sigma^{2} / 2\right)\right)}{\left(\exp \left(\beta_{1}+\beta_{2} x\right) \times \exp \left(\sigma^{2} / 2\right)\right)}\right] \%
$$

$$
=100\left[\frac{\exp \left(\beta_{1}+\beta_{2} x\right) \exp (\delta)-\exp \left(\beta_{1}+\beta_{2} x\right)}{\exp \left(\beta_{1}+\beta_{2} x\right)}\right] \%
$$

$$
=100[\exp (\delta)-1] \%
$$

Appendix 7
Details of log-linear model interpretation
$E(y)=\exp \left(\beta_{1}+\beta_{2} x+\beta_{3} z+\gamma(x z)\right) \times \exp \left(\sigma^{2} / 2\right)$
$\left.\frac{\partial E(y)}{\partial z}=\exp \left(\beta_{1}+\beta_{2} x+\beta_{3} z+\gamma(x z)\right) \times \exp \left(\sigma^{2} / 2\right) \times\left(\beta_{3}+\gamma x\right)\right)$
$100\left[\frac{\partial E(y) / E(y)}{\partial z}\right]=100\left(\beta_{3}+\gamma x\right) \%$

